Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-154528

ABSTRACT

Context: Dental pulp stem cells (DPSCs) are the most diagnosed type of stem cells isolated from dental tissues. Previous studies demonstrate that tissues in earlier stages of development could be better stem cell resources for tissue engineering. Aims: In this study, aiming at finding younger stem cell resources, we chose the pulp of human unerupted third molar teeth when the crown was completely formed and the roots had not begun their development, Nolla's 6 th developmental stage (N6 th ). Materials and Methods: Surgical removal of the third molar was performed by aseptic technique with minimal trauma. The tissues were digested enzymatically and the resulted single cells were cultured. Immunophenotypic characterization of the cells was done via immunocytochemistry, immunofluorescence, and flow cytometry assays. Adipogenic and osteogenic differentiation potential of these cells was examined and confirmed by histochemical staining and reverse transcription-polymerase chain reaction analysis. Statistical Analysis Used: This study is descriptive. Results: N6 th -unerupted dental pulp cultured cells expressed DPSC markers: Vimentin, CD73, CD90, CD105, CD166, CD44, CD146, and STRO-1, but did not express hematopoietic cell markers: CD14, CD34, CD45, HLA-DR and were also negative for dentin sialoprotein negative showing an undifferentiated preodontogenic state. Adipocytes differentiated from N6 th -DPSCs were positively stained with Oil-Red-O and expressed both early and late adipocyte specific genes. Formation of Alizarin-red positive condensed calcium-phosphate nodules accompanied by strong expression of two osteogenic mRNAs, exhibited osteogenic differentiation. Conclusion: Based on the results of this study, we suggest that N6 th -DMSCs are a viable choice for cryo-banking and future usage in regenerative therapies; however, more investigations are necessary before clinical application can commence.


Subject(s)
Cryopreservation/methods , Dental Pulp/cytology , Humans , Molar, Third/cytology , Molar, Third/growth & development , Stem Cells
2.
Braz. dent. j ; 22(2): 91-98, 2011. tab
Article in English | LILACS | ID: lil-583796

ABSTRACT

In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer’s disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.


Nos últimos anos, as pesquisas com células tronco têm aumentado exponencialmente devido ao reconhecimento de que seu potencial terapêutico pode melhorar a qualidade de vida de pacientes com diversas doenças, como a doença de Alzheimer, isquemias cardíacas e, até mesmo, nas pesquisas de medicina regenerativa que visa uma possível substituição de órgão perdidos, como por exemplo, os dentes. Baseado em habilidades de reparar tecidos injuriados e restaurar parcialmente as funções de um órgão, diversos tipos de células-tronco têm sido estudadas. Recentes evidências demonstram que as células-tronco são primariamente encontradas em nichos e que certos tecidos apresentam mais células-tronco que outros. Entre estes, os tecidos dentais são considerados como uma fonte rica de células-tronco mesenquimais adequado para aplicações em engenharia tecidual. Sabe-se que estas células têm o potencial de diferenciarem-se em diversos tipos celulares, incluindo osteoblastos, células progenitoras de neurônios, osteoblastos, condrócitos e adipósitos. Na odontologia, a biologia celular e a engenharia tecidual são de grande interesse, pois fornecem inovações na geração de novos materiais clínicos e ou na regeneração tecidual. Estas podem ser isoladas e crescidas em diversos meios de cultura apresentando grande potencial para ser usada na engenharia tecidual, incluindo regeneração de tecidos dentais, nervos e ossos. Recentemente, outra fonte de células tronco tem sido geradas a partir de células somáticas de humanos a um estágio de pluripotência, chamados de células-tronco pluripotente induzida (iPS) levando à criação de células-tronco específicas. Coletivamente, a multipotencialidade, altas taxas de proliferação e acessibilidade, faz das células-tronco dentárias uma fonte atrativa de células-tronco mesenquimais para regeneração tecidual. Esta revisão descreve novos achados no campo da pesquisa com células-tronco dentais e seu potencial uso na regeneração tecidual.


Subject(s)
Animals , Humans , Dental Papilla/cytology , Dental Pulp/cytology , Dental Sac/cytology , Mesenchymal Stem Cells , Periodontal Ligament/cytology , Tissue Engineering , Cell Differentiation , Induced Pluripotent Stem Cells , Molar, Third/cytology , Regeneration , Tooth Exfoliation , Tooth Apex/cytology , Tooth, Deciduous/cytology
SELECTION OF CITATIONS
SEARCH DETAIL